Speaker and Speech Recognition using Deep Neural Network
نویسندگان
چکیده
منابع مشابه
Stimulated Deep Neural Network for Speech Recognition
Deep neural networks (DNNs) and deep learning approaches yield state-of-the-art performance in a range of tasks, including speech recognition. However, the parameters of the network are hard to analyze, making network regularization and robust adaptation challenging. Stimulated training has recently been proposed to address this problem by encouraging the node activation outputs in regions of t...
متن کاملSpeech recognition using deep neural network – recent trends
Deep neural networks (DNN) are special forms of learning-based structures composed of multiple hidden layers formed by artificial neurons. These are different to the conventional artificial neural networks (ANN) and are accepted as efficient tools for solving emerging real world problems. Recently, DNNs have become a mainstream speech recognition tool and are fast becoming part of evolving tech...
متن کاملSilent speech recognition from articulatory movements using deep neural network
Laryngectomee patients lose their ability to produce speech sounds and suffer in their daily communication. There are currently limited communication options for these patients. Silent speech interfaces (SSIs), which recognize speech from articulatory information (i.e., without using audio information), have potential to assist the oral communication of persons with laryngectomy or other speech...
متن کاملA unified deep neural network for speaker and language recognition
Significant performance gains have been reported separately for speaker recognition (SR) and language recognition (LR) tasks using either DNN posteriors of sub-phonetic units or DNN feature representations, but the two techniques have not been compared on the same SR or LR task or across SR and LR tasks using the same DNN. In this work we present the application of a single DNN for both tasks u...
متن کاملA deep neural network speaker verification system targeting microphone speech
We recently proposed the use of deep neural networks (DNN) in place of Gaussian Mixture models (GMM) in the i-vector extraction process for speaker recognition. We have shown significant accuracy improvements on the 2012 NIST speaker recognition evaluation (SRE) telephone conditions. This paper explores how this framework can be effectively used on the microphone speech conditions of the 2012 N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Emerging Research in Management and Technology
سال: 2018
ISSN: 2278-9359
DOI: 10.23956/ijermt.v6i8.126